DDoS attack detection and wavelets

نویسندگان

  • Lan Li
  • Gyungho Lee
چکیده

This paper presents a systematic method for DDoS attack detection. DDoS attack can be considered system anomaly or misuse from which abnormal behavior is imposed on network traffic. Attack detection can be performed via abnormal behavior identification. Network traffic characterization with behavior modeling could be a good guidance of attack detection. Aggregated traffic has been found to be strong bursty across a wide range of time scales. Wavelet analysis is able to capture complex temporal correlation across multiple time scales with very low computational complexity. We utilize energy distribution based on wavelet analysis to detect DDoS attack traffic. Energy distribution over time would have limited variation if the traffic keeps its behavior over time (i.e. attackfree situation); while an introduction of attack traffic in the network would elicit significant energy distribution deviation in short time period. Our experimental results with typical Internet traffic trace show that energy distribution variance changes markedly causing a “spike” when traffic behaviors affected by DDoS attack. In contrast, normal traffic exhibits a remarkably stationary energy distribution. In addition, this spike in energy distribution variance can be captured in early stage of attack, far ahead of congestion build-up, making it an effective attack detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

F-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management

Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...

متن کامل

Neural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks

Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...

متن کامل

Review on Ddos Attacks and Various Detection Mechanisms

DDoS attack is a coordinated attack on massive scale and it is a major threat in current computer networks. It is not easy to detect the attack , The seriousness of the DDoS problem and the increased frequency of DDoS attacks have led to the advent of numerous DDoS defense mechanisms. Detection mechanism is the first step to avoid the DDoS attack. Some of these mechanisms address a specific kin...

متن کامل

DDoS Detection System Based on Data Mining

Distributed denial of service attack(DDoS) brings a very serious threat to send to the stability of the Internet.This paper analyzes the characteristic of the DDoS attack and recently DDoS attack detection method. Presents a DDoS attack detection model based on data mining algorithm. FCM cluster algorithm and Apriori association algorithm used to extracts network traffic model and network packe...

متن کامل

Collaborative Defense Mechanism Using Statistical Detection Method against DDoS Attacks

Distributed Denial-of-Service attack (DDoS) is one of the most outstanding menaces on the Internet. A DDoS attack generally attempts to overwhelm the victim in order to deny their services to legitimate users. A number of approaches have been proposed for defending against DDoS attacks accurately in real time. However, existing schemes have limits in terms of detection accuracy and delay if the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003